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ABSTRACT: In this article we have used modified trapezoidal quadrature method to solve the Volterra 
integral equation (VIE) of the second type. Using Romberg extrapolation, the speed and accuracy of the 
approximations obtained for the integral equation will be improved. The calculated results are compared 
to results from the trapezoidal quadrature method. 
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INTRODUCTION 
 
 The Volterra integral equations are used in many problems of physics such as, the particle transport problems 
of astrophysics, potential theory and Dirichle problem, electrostatic and radiative heat transfer problems and in 
some engineering fields (Wazwaz, 1996, Wang, 2006; Saberi-Nadjafi and Heidari, 2006). Integral equation theory 
and its application in applied mathematics is an important issue. There are several numerical approximations to the 
results of linear Volterra integral equations of the second type. Many different basic functions have been recently 
utilized to estimate the result of integral equations, such as orthogonal bases and wavelets (Jung and 
Schanfelberger, 1992, Maleknejad and Hadizadeh, 1999, Razzaghi and Arabshahi, 1989). Here we use modified 
the trapezoidal quadrature rule to solve the linear Volterra integral equations of the second type. The general form 
of the linear VIE of the second type is as follows: 

( ) ( ) ( , ) ( )
x

a
u x f x k x t u t dt    

a x b   (1) 

 The kernel function of the integral equation,  k x, t
, and the function f(x) are known and u(x) is the unknown 

function to be determined using the modified trapezoidal quadrature method. 
 
Quadrature Method 

 Different quadrature methods could be used to solve linear VIEs of the second type. The modified trapezoid 
quadrature method has been used here for the numerical computations. We consider the given integral equation 
(1) and we put 
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For which the unknown function values at any mesh point are described as  
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 The approximation of integrals in (3) using the modified trapezoidal rule will result in the following system of 
equations: 
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 In the above relations 
 

( , )
,

k x t
J x t

t




 , and 0 1, ,..., nu u u  
can be approximated using the modified trapezoidal and 

trapezoidal rules. For this purpose the derivative of the integral equation (1) with respect to x is: 
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Supposing
 

k(x, t)
,

x
m x t




 , then (5) is as follows: 
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(6) 

As mentioned to approximate 0 1, ,..., nu u u  
 two cases are considered: 

 
First case: 

0 1, ,..., nu u u  
 can be approximated using the simple trapezoid method. 

 
Second case: 

0 1, ,..., nu u u  
 can be approximated using the modified trapezoid method. 
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,

t x
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  . 
In the first case, equation (6) is solved using the simple trapezoidal integration method, in which case the 

approximation 
0,1, ...,,i i nu 

 are obtained as follows: 
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Substituting (7) in (4), 
0,1, ...,,i i nu 

 are obtained as: 
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 In the second case, equation (6) is solved using the modified trapezoidal integration method, in which case the 

resulting 
0,1, ...,,i i nu 

are: 
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Using the simple mathematical rules, approximations iu 
 0,1,...,i n  are obtained as bellow: 
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Substituting these obtained approximations in (4), iu 0,1,...,i n   are obtained as follows: 
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Romberg Extrapolation 

The integral I through numerical 
( )

m
T h

method, with length step of h and the convergence of order k, is 

approximated by   ( )k

mI T h C h 
. For the sake of a better approximation, the integral can be calculated with the 

length step of h/2 and the same order of convergence as 
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  . 
To speed up the pace of the convergence in our methods and obtaining more accurate results, the Romberg 
extrapolation model is used. 
With the intensive use of the Romberg numerical integration algorithm, now a method is applied bellow to improve 
the numerical solution of the given integral with the convergence order (k+2): 
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Table 1 shows the application of the described algorithm on quadrature method for solving linear Volterra integral 
equations of the second type. 
 
Table 1. The algorithm for Romberg extrapolation applied on quadrature method for solving linear Volterra integral equations of 

the second type 
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Numerical Exampl 
Example 1 
The presented algorithm has been applied for solving linear Volterra integral equation of the second type 

0

1
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u x x x t u t dt  
 

0 2x   (13) 

The exact solution of this equation is 
3

15( )
x

u x x e  
(14) 

 Tables 2 and 3 show absolute errors of numerical results calculated according to the presented algorithm, and 
for both cases described above. The results after Romberg extrapolation are more accurate than results obtained 

utilizing the quadrature formula over more points. For example, the calculated values 
2
( )
2

h
T

 and 3
( )T h  are much 

more accurate than 
1
( )
8

h
T

. 
 

Table 2. Absolute errors of the numerical solution of (13) at x = 2 with h = 0.25 in the first case 
 

 
 
 
 
 
 

Table 3. Absolute errors of the numerical solution of (13) at x = 2 with h = 0.25 in the second case 
 
 

 
 
 
 
 
 These results obtained from the solution of the problem in example 1, using the trapezoidal quadrature 
method, are shown in Figure 1. In cases a, b, c and d, diagrams related to equation (12) are respectively plotted for 
m=1, m=2, m=3 and m=4. 
In diagram (a) for which m =1, the difference between the errors of the trapezoidal and the modified trapezoidal 
quadrature methods is high, but the difference between the errors of the first and the second cases of the modified 
trapezoidal quadrature method are relatively low. 
 Diagram (b) for which m=2, is similar to the first case, with this difference that the error between the first and 
second cases of the modified trapezoidal quadrature method is minimal. 
 In diagram (c) for which m=3, the modified trapezoidal quadrature method is more accurate than the 
trapezoidal quadrature method, in which the first case is more accurate. 
 In diagram (d) for which m=4, the error between the first case of the modified trapezoidal quadrature and 
trapezoidal quadrature methods is very small, while the error between the second case of the modified trapezoidal 
quadrature and trapezoid quadrature methods is very much. 
 
 
Example 2 
The presented algorithm is applied for solving linear Volterra integral equation of the second type 

2 2 21
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
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 The exact solution to this equation is ( ) 2u x x . Tables 4 and 5 show absolute errors of numerical results 
calculated according to the presented algorithm, for the two cases described above. The results after Romberg 
extrapolation are again more accurate than results obtained using the integration formula over more points. 
 And here, These results obtained from the solution of the problem in example 2, using the trapezoidal 
quadrature method, are shown in Figure 2. In cases a, b, c and d, diagrams related to equation (12) are 
respectively plotted for m=1, m=2, m=3 and m=4. 
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 In diagram (a) for which m =1, the error of the modified trapezoidal quadrature method is less than the 
trapezoidal quadrature method, and the error difference between the first case and the second case of the modified 
trapezoidal quadrature method is to an extent that it can be said that the two curves coincide. 
 In diagram (b) for which m =2, the modified trapezoidal quadrature method, in both cases, is more accurate 
than the trapezoidal quadrature method. 
In diagram (c) for which m =3, the difference between the errors of the modified 
trapezoidal quadrature method and trapezoidal quadrature method is low, while the 
difference between the second case of the trapezoidal quadrature method and the trapezoidal quadrature method 
is very much. 
 In diagram (d) for which m =4, the difference between the errors of the first case of modified trapezoidal 
quadrature method and the trapezoidal quadrature method is very low, while the errors between the second case 
of the modified trapezoidal quadrature method and the trapezoidal quadrature method is very much. 
 

Example 3 
The presented algorithm is applied for solving linear Volterra integral equation of the second type 

2 2
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1 1
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 The exact solution of this equation is 

2
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x

u x e


 . Tables 6 and 7 show absolute errors of numerical results 
calculated according to the presented algorithm, for the two cases expressed. The results after Romberg 
extrapolation are again more accurate than after quadrature integration over more points. 
 Also here, These results obtained from the solution of the problem in example 3, using the trapezoidal 
quadrature method, are shown in Figure 3. In cases a, b, c and d, diagrams related to equation (12) are 
respectively plotted for m=1, m=2, m=3 and m=4. 
 In diagram (a) for which m=1, the error of the modified trapezoidal quadrature method is very small compared 
to the trapezoidal quadrature method. And the difference error between the first case and the second case of the 
modified trapezoidal quadrature method is to an extent that it can be said the two curves coincide. 
 In diagram (b) for which m=2, the modified trapezoidal quadrature method according to the first case, is more 
accurate than the second case and the trapezoidal quadrature method. 
In diagram (c) for which m=3, the accuracy of the modified trapezoidal quadrature method in both cases is more 
than the trapezoidal quadrature method. 
 In diagram (d) for which m=4, the difference between the errors of the first case of the modified trapezoidal 
quadrature method and trapezoidal quadrature method is very low, while the error between the second case of the 
modified trapezoidal quadrature method and the trapezoidal quadrature method is very much.  
 

Table 4. Absolute errors of the numerical solution of (15) at x=1 with h=0.25 in the first case 
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Table 5. Absolute errors of the numerical solution of (15) at x=1 with h=0.25 in the second case 
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Table 6. Absolute errors of the numerical solution of (16) at x=1 with h=0.25 in the first case 

m=1                    m=2                    m=3                    m=4                    m=5 

8.05*10
-6

 2.02*10
-6

 1.40*10
-9

 2.66*10
-12

 4.99*10
-16

 
4.99*10

-7
 1.25*10

-7
 2.45*10

-11
 9.93*10

-15
  

3.11*10
-8

 7.78*10
-9

 3.93*10
-13

   
1.94*10

-9
 4.86*10

-9
    

1.21*10
-10

     

K=1 K=2 K=3 K=4  
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Table 7. Absolute errors of the numerical solution of (16) at x=1 with h=0.25 in the second case 
m=1                    m=2                    m=3                    m=4                    m=5 

4.79*10
-5

 8.82*10
-6

 4.88*10
-9

 3.85*10
-10

 1.12*10
-11

 

1.86*10
-5

 5.56*10
-7

 4.55*10
-10

 1.27*10
-11

  
5.07*10

-6
 3.52*10

-8
 1.96*10

-11
   

1.29*10
-6

 2.22*10
-9

    

3.25*10
-7

     
K=1 K=2 K=3 K=4  

 

 
Figure 1. Absolute errors of the numerical solution of Equation (13) at x=2 for both cases of the modified trapezoidal (TS1 as the 

first and TS2 as the second case) and also the trapezoidal quadrature methods (T) at m=1, 2, 3 and 4 versus length step h 

 

 
Figure 2. Absolute errors of the numerical solution of Equation (15) at x=1 for both cases of the modified trapezoidal (TS1 as the 

first and TS2 as the second case) and also the trapezoidal quadrature methods (T) at m=1, 2, 3 and 4 versus length step h 
 

 
Figure 3. Absolute errors of the numerical solution of Equation (16) at x=1 for both cases of the modified trapezoidal (TS1 as the 

first and TS2 as the second case) and also the trapezoidal quadrature methods (T) at m=1, 2, 3 and 4 versus length step h 
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CONCULSION 
 

 Volterra integral equation of the second type is solved using the modified trapezoidal quadrature method, 
which in tables 2 - 6 and diagrams in the (a) sections of figures 1, 2, 3 for m=1 indicate that this quadrature method 
is more accurate than the trapezoidal method used in (Mesˇtrovic and Ocvirk, 2007). 
 With the implementation of Romberg extrapolation on modified trapezoidal quadrature method for solving the 
Volterra integral equation of the second type we noted that despite the discretization over a few points, more 
efficient and accurate result are obtained, but in contrast with the results obtained in (Mesˇtrovic and Ocvirk, 2007), 
the Romberg extrapolation is not as efficient when used in the modified trapezoidal quadrature method for solving 
the Volterra integral equation of the second type.  
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